Ferroelectricity in underdoped La-based cuprates
نویسندگان
چکیده
Doping a "parent" antiferromagnetic Mott insulator in cuprates leads to short-range electronic correlations and eventually to high-Tc superconductivity. However, the nature of charge correlations in the lightly doped cuprates remains unclear. Understanding the intermediate electronic phase in the phase diagram (between the parent insulator and the high-Tc superconductor) is expected to elucidate the complexity both inside and outside the superconducting dome, and in particular in the underdoped region. One such phase is ferroelectricity whose origin and relation to the properties of high-Tc superconductors is subject of current research. Here we demonstrate that ferroelectricity and the associated magnetoelectric coupling are in fact common in La-214 cuprates namely, La2-xSrxCuO4, La2LixCu1-xO4 and La2CuO4+x. It is proposed that ferroelectricity may result from local CuO6 octahedral distortions, associated with the dopant atoms and clustering of the doped charge carriers, which break spatial inversion symmetry at the local scale whereas magnetoelectric coupling can be tuned through Dzyaloshinskii-Moriya interaction.
منابع مشابه
The Meissner effect in a strongly underdoped cuprate above its critical temperature
The Meissner effect and associated perfect 'bulk' diamagnetism together with zero resistance and gap opening are characteristic features of the superconducting state. In the pseudogap state of cuprates, unusual diamagnetic signals and anomalous proximity effects have been detected, but a Meissner effect has never been observed. Here we probe the local diamagnetic response in the normal state of...
متن کاملنظریه میدان میانگین برای ابررسانایی مسی دمای بالا
Two decades ago the epoch making discovery of high Tc cuprate superconductivity by Bednorz and Müller shocked the world’s superconductivity community. However, already in 1979 and 1980, the first heavy fermion superconductor CeCu2Si2 and organic superconductor (TMTSF)2PF6 have been discovered respectively. Also we know now that all these superconductors are unconventional and nodal. Further t...
متن کاملMagnetic-field-induced localization of quasiparticles in underdoped La(2-x)SrxCuO4 single crystals.
Magnetic-field-induced ordering of electrons around vortices is a striking phenomenon recently found in high-T(c) cuprates. To identify its consequence in the quasiparticle dynamics, the magnetic-field (H) dependence of the low-temperature thermal conductivity kappa of La(2-x)SrxCuO4 crystals is studied for a wide doping range. It is found that the behavior of kappa(H) in the subkelvin region c...
متن کاملConvergence of energy-dependent incommensurate antiferromagnetic neutron scattering peaks to commensurate resonance in underdoped bilayer cuprates
The recently discovered coexistence of incommensurate antiferromagnetic neutron scattering peaks and commensurate resonance in underdoped YBa2Cu3O6+x is calling for an explanation. Within the t-J model, the doping and energy dependence of the spin dynamics of the underdoped bilayer cuprates in the normal state is studied based on the fermion-spin theory by considering the bilayer interactions. ...
متن کاملField-induced thermal metal-to-insulator transition in underdoped LSCO
The transport of heat and charge in cuprates was measured in undoped and heavily-underdoped single crystal La2−xSrxCuO4+δ (LSCO). In underdoped LSCO, the thermal conductivity is found to decrease with increasing magnetic field in the T → 0 limit, in striking contrast to the increase observed in all superconductors, including cuprates at higher doping. The suppression of superconductivity with m...
متن کامل